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ABSTRACT

Measurements of quantum gravity could be made by looking at some of the proposed quan-

tum gravity effects, such as fluctuations of space-time. The Lorentz invariance violation

(LIV) effect appears as a consequence of the modified photon dispersion relation, used to

model the effect of space-time fluctuations on gamma rays. Using the LIV time of flight

analysis, we are able to look for quantum gravity effects using observations at energies much

lower than the Planck scale. One of the most popular methods for the LIV time of flight

analysis is the maximum likelihood method.

In this thesis, we focused on looking at how the choice of the function used to create the

light curve template affects the maximum likelihood analysis. The functions used were: i)

sum of Gaussian distributions, ii) sum of Cauchy distributions, iii) sum of skewed Gaussian

distributions, iv) Fourier series, v) Kernel density estimation. This analysis was based on

simulations of observations of Markarian 421 on the night of 24 to 25 of April 2014, preformed

by Major Atmospheric Gamma Imaging Cherenkov (MAGIC) telescopes.

Fourier series and Kernel density estimation were not able to achieve a satisfying fit of the

observed data, so their light curves were not used for the final maximum likelihood analysis.

For the other functions, the fits managed to capture the structure of the light curve with

more accuracy. Furthermore, their χ2 tests were very similar, so they made good candidates

for comparison.

The recreated light curves were then used in the LIVelihood software for LIV time of

flight studies. Using simulations, LIV parameter λ was calculated along with the respective

upper and lower limits to form a 95% confidence interval. The light curve template created

using the sum of skewed Gaussian distributions was not converging in enough simulations

for the λ distribution to be calculated. For the light curve templates created using the

sum of Gaussian distributions and the sum of Cauchy distributions λ was calculated to be

(−139.9±875) s/TeV and (−76.22±971) s/TeV, respectively. In addition, the lower limit on

the energy at which the effects of quantum gravity become significant in the linear term were

calculated from λ and amount to E
(G)
QG1

= 2.48557·1017 GeV and E
(C)
QG1

= 3.11314·1017 GeV for

the sum of Gaussian distributions and the sum of Cauchy distributions light curve templates,

respectively.



SAŽETAK

Kvantna gravitacija bi semogla mjeriti pomoću nekih od predloženih efekata kvantne grav-

itacije, kao na primjer fluktuacije prostor-vremena. Efekt narušenja Lorentzove simetrije

(LIV) pojavljuje se kao posljedica modificirane disperzijske jednadžbe fotona, koja se koristi

za modeliranje efekta fluktuacija prostor-vremena na gamma-zrake. Koristeći LIV analizu

vremena leta, možemo promatrati efekte kvantne gravitacije koristeći opažanja na energi-

jama puno nižim od Planckove skale. Jedna od najpopularnijih metoda za LIV analizu

vremena leta je maximum likelihood metoda.

U ovom radu fokusiramo se na promatranje kako odabir funkcije kojim se kreira uzorak

svjetlosne krivulje utječe na maximum likelihood analizu. Funkcije koje smo koristili su: i)

suma Gaussovih raspodjela, ii) suma Cauchy raspodjela, iii) suma asimetričnih Gaussovih

raspodjela, iv) Fourierov red, v) Kernel density estimation (KDE). Ova analiza je bila bazi-

rana na simulacijama opažnja Markariana 421 u noći od 24. do 25. travnja 2014., s Major

Atmospheric Gamma Imaging Cherenkov (MAGIC) teleskopima.

Prilagodbe podataka s Fourierovim redom i KDE-om nisu dale zadovoljavajuće rezultate

te ih nismo koristili u konačnoj analizi. Ostale funkcije su puno bolje prikazale strukturu

podataka. Također rezultati njihovih χ2 testova su međusobno jako slični što znači da smo

ih mogli pouzdano uspoređivati.

Svjetlosne krivulje dobivene iz prilagodbe smo zatim koristili u LIVelihood softveru

za LIV analizu vremena leta. Koristeći simulacije izračunali smo LIV parametar λ skupa

s njegovim gornjim i donjim granicama da bi dobili 95% interval pouzdanosti. Distribu-

cija parametra λ nije bila izračunata za svjetlosnu krivulju dobivenu iz sume asimetričnih

Gaussovih raspodjela jer minimum nije konvergirao u dovoljno simulacija. Za svjetlosne

krivulje dobivene iz sume Gaussovih raspodjela i Cauchyevih distribucija vrijednost parame-

tra λ iznosi 8 − 139.9 ± 875) s/TeV i (−76.22 ± 971) s/TeV, respektivno. Za kraj pomoću

parametra λ izračunate su donje granice vrijednosti energije na kojoj efekti kvantne grav-

itacije postaju signifikantni u linearnom članu i one iznose E
(G)
QG1

= 2.48557 · 1017 GeV za

sumu Gaussovih raspodjela i E(C)
QG1

= 3.11314 · 1017 GeV za sumu Cauchyevih distribucija.
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1 INTRODUCTION

The need for a quantum formulation of the theory of gravity arises while looking at some

of the extreme phenomena in the universe, such as the very beginning of the universe or

some results of the general theory of relativity, such as the singularities of black holes. In

these cases, the classical formulation of the theory of gravity based on the general theory

of relativity breaks down, and a more fundamental theory is required to describe these

phenomena. This new description comes in the form of theory of quantum gravity. While

there have been many attempts to formulate a working theory of quantum gravity using

different approaches (see, e.g. [1, 2, 3, 4, 5, 6]), a consistent theoretical formulation has not

yet been proposed. One of the challenges in coming up with a robust theoretical foundation

for quantum gravity is the lack of experimental result and measurements that would help

guide the theoretical efforts. This is because the expected scale at which the quantum gravity

could be measured is the Planck scale (EPl ≈ 1.22 · 1019 GeV). Presently, we are not able to

reach anywhere near those energies using terrestrial particle accelerators. That leaves us with

using extraterrestrial accelerators such as active galactic nuclei (AGN), pulsars, gamma-ray

bursts, etc. But even then the highest energy particles observed so far are cosmic rays at

energies ∼ 3.2 · 1011 GeV [7, 8], which is still several orders of magnitude too low. Other

sources such as gamma rays have even lower energies at ≈ 1.4 · 106 GeV [9]). Despite these

limitations, there could still be a way to measure the effects of quantum gravity.

One of the proposed quantum gravity effect would be fluctuations of space-time on the

Planck scale. These fluctuations would affect photons with energies much lower than the

Planck scale, which can then be used to measure the effects of quantum gravity. The effect

of fluctuation on photons can be modelled with a modified photon dispersion relation. The

modification of the photon dispersion relation leads to a change in the photon group velocity

in vacuo. The new group velocity is energy dependent, which means that the photons

of different energies travel at different velocities in vacuo. This now violates the Lorentz

symmetry. However, these effects are suppressed by the order of energy they appear at.

Being on the Planck scale severely limits the effects of this modification, but since the effect

is cumulative it can still have significant consequence for great distances. Photon energy also

plays a key role in the significance of the effect, with higher energy photons experiencing a

bigger change in the group velocity.

In this thesis, we searched for the Lorentz invariance violation (LIV) by comparing the
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arrival times of photons with their temporal distribution at the source. If the LIV effect is

present, there should be a difference in the arrival time as a consequence of the change in

their time of flight as a result of the modification in the dispersion photon relation. For the

analysis, we used gamma rays emitted from Markarian 421, observed by Major Atmospheric

Gamma Imaging Cherenkov (MAGIC) telescopes during a strong flare on the night of 24

to 25 of April 2014. The photon temporal distribution needed to be recreated. With the

telescope, we are only able to detect the light curve as it looks like on Earth. Without LIV,

that light curve would be the same at the source. However, the LIV effect is the result of

the change in photon speed, meaning that the light curve would change over time as we

move from the source to the detector. To recreate the light curve at the source, we created

a light curve template by fitting observed low energy gamma rays with different functions.

In the context of this thesis, we considered that the low energy gamma rays are the ones

with energies in the range from 100 to 200 GeV. For fitting the light curve, we used several

different functions: i) sum of Gaussian distributions, ii) sum of Cauchy distributions, iii)

sum of skewed Gaussian distributions, iv) Fourier series v) Kernel density estimation. The

resulting distribution were then used as inputs in LIVelihood software. LIVelihood was

developed by Bolmont et al. [10] to allow LIV time of flight analysis from multiple sources

and observatories.

The idea behind using different functions was to compare the results of the fit and see

which method gave us a more optimised maximum likelihood analysis. For the fit, functions

attempted to use functions that gave the similar fit as determined by χ2 test. The first criteria

was to determine whether the maximum likelihood would converge for a given function.

Secondly, we compared the result to see which function managed to give us the narrowest

confidence interval for the LIV parameter. Furthermore, we looked at which function would

compute the maximum likelihood in the shortest time. Finally, we compared the complexity

of the fit functions. If a function is too complex, it might be difficult to make a fit that

converges.
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2 LORENTZ INVARIANCE VIOLATION

As mentioned before, a proposed effect of quantum gravity is fluctuation of space-time on

the Planck scale. To model the effect of these fluctuations, we can introduce a modified

photon dispersion relation:

E2 = p2c2 ×

[
1 +

∞∑
n=1

±
(

E

EQG,n

)n
]

(1)

where E is the photon energy, p is the photon momentum, c is the standard speed of light,

EQG,n is the energy at which the effects of quantum gravity become significant and n order in

the expansion. So far, only the lower limits have been set on EQG,n and depending on the n

used the limits are different. Limits vary based on the observed source and analysis methods,

but for example, the limits from Markarian 501 observations are EQG,1 = 2.1 · 1017 GeV and

EQG,2 = 2.6 · 1010 GeV [11]. For n = 1, we get the linear term, which is usually considered

first. In the event that the contribution of the linear term is negligible, meaning EQG,1 → ∞,

the quadratic term (n = 2) is considered. Since the energy EQG,n is around the order of

Planck scale, going beyond the quadratic term would require very high photon energies E

for the term to be significant. Because of this, experiments usually focus on the linear and

quadratic term.

The modification of the photon relation then results in the change of the photon group

velocity in vacuo:

vg =
∂E

∂p
∼= c

[
1 +

∞∑
n=1

±n+ 1

2

(
E

EQG

)n
]

(2)

The + and − cases correspond to speeds greater than c (superluminal) and smaller than c

(subluminal), respectively.

Lorentz symmetry is the invariance on Lorentz transformations. That invariance guar-

anties that all photons have the same velocity in vacuo regardless of direction of emission or

the mutual speed of the source and the observer. The modification of the photon dispersion

relation (1) and the consequent energy dependence in the photon group velocity in vacuo (2)

leads to a violation of the Lorenz invariance, meaning photons of different energies travel at

different speeds in vacuo. For two photons with energies Eh > El emitted at the same time,

the difference in arrival time can be expressed as:
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where ∆td is the detection interval and ∆tLIV difference in time of flight given by:

∆tn = ±n+ 1

2

En
h − En

l

H0En
QG

z∫
0

(1 + z′)n√
ΩΛ + Ωm (1 + z′)3

dz′ (3)

where H0 = (67.4±0.5)kms−1Mpc the Hubble constant, ΩΛ = 0.685±0.007 the dark-energy

density parameter and Ωm = 0.315 ± 0.007 the matter density parameter are cosmological

parameters of the ΛCDM model [12] and z source redshift [13]. This effect can be positive or

negative depending on the sign used in the photon group velocity, resulting in propagation

in vacuo faster or slower than the standard speed of light. This effect is cumulative, which

means that the photons emitted by sources that are further away from us would exhibit a

stronger change in their time of flight. The effect is also energy dependant, meaning that

higher energy photons display a greater time of flight change.

For later use in analysis, from equation (3), we can define another parameter λn as:

λn =
∆tn

(En
h − En

l )
∫ z

0
(1+z′)n√

ΩΛ+Ωm(1+z′)3
dz′

= ± n+ 1

2H0En
QG

(4)

Parameter λn is independent of the source distance and represents the time delay in s/TeV.

As seen from equation (3), the LIV effect leads to a change in the temporal distribution of the

photons at the detector compared to the temporal distribution at the source. The existence

of the LIV effect can therefore be verified by checking if the detected photons match their

distribution at the source.
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3 ANALYSIS METHOD

Presently, one of the most popular methods for LIV time of flight analysis is the maximum

likelihood method, see e.g. [14].

3.1 Light curve template

In general, we are not able to know the exact time of emission for an individual gamma

ray, we can only put constraints on the emission times based on the variability in the flux.

For periods where flux is increased, there is a greater chance of a photon emission during

that time. This means that if we have a flux that is highly variable, we can have a more

strongly constrained temporal distribution of emitted photons. In addition, we are not able

to obtain a light curve directly at the observed source. We are limited in observations to the

light curve obtained directly at the detector. This poses a problem because to test for the

existence of the LIV effect we need to know the temporal distributions of the photons at the

source of the emission. To overcome this problem, we needed to recreate the photon temporal

distribution at the source using the observed light curve. We achieved this by creating a light

curve template. The light curve template is a probability distribution function of gamma

ray emission times. To create the light curve template, we fit the observed light curve with a

function of our choice. However, we only fit the photons for which the LIV effect is negligible.

For those photons, the distribution did not change while they were travelling from the source

to the detector. Then we assume that all the photons at the source were distributed in this

way, which then gives us the temporal distribution of the photons at the source before any

possible LIV effects.

Since we need a highly variable flux, the structure of the resulting light curve is complex.

This makes creating the light curve template difficult. Firstly, we need enough data to

make sure the light curve is properly fitted. If we use too little data, the resulting light

curve template might not be an accurate representation of the source light curve. Secondly,

the choice of the function used for the fit is important. Some functions might create a

more accurate light curve template, but once used as the input for maximum likelihood

estimation fail to converge, or might take a long time to process. Because of this, we are

using 5 different functions for the fit. We can then compare how each function preforms by

looking at which functions give the narrowest confidence interval for the LIV parameter, has

5



a faster computing time, and if some do not converge at all.

3.2 Extracting the signal

Gamma-ray observations with terrestrial telescopes are made by detecting the Cherenkov

radiation resulting from the extensive air showers induced by their interaction with the

Earth’s atmosphere. When a gamma ray or a cosmic ray hits the atmosphere, it splits into

an electron positron pair. These electrons and positrons create more gamma rays, which

produce more electron positron pairs and so on. If the electrons or positrons are travelling

faster than the speed of light in the air, they emit Cherenkov radiation. This radiation is

then detected by the telescopes. The resulting observations are then used to recreate the

energy and origin of the initial gamma ray or cosmic ray that interacted with the atmosphere.

This makes it difficult to know for sure if the detected event is a gamma ray or a cosmic ray.

In addition, not all detected gamma rays are emitted from the observed source. Some come

from other sources and make up the background noise.

To make the analysis more accurate, we need to subtract the background from the source

signal. The first step in doing so if defining the ON and OFF regions in the field of view.

The ON region is a circular area in the camera around the source position in the camera. It

contains events from the observed source as well as the background noise. The OFF region

is a circular area in the camera adjacent to ON region. It contains just the background. The

number of events in the ON region is labelled by NON, while the number of events in the

OFF region is labelled by NOFF. By subtracting the number of ON and OFF events, we are

left with the number of excess events, i.e. NEX. This is an approximate number of events

emitted by the source. We are not able to know the exact number of signal events without

the background because we are not able to differentiate between the signal and background

events in the ON region.

3.3 Maximum likelihood

Maximum likelihood estimation is a statistical method of estimating the value of a parameter

λ, which follows an assumed probability distribution, so that the estimated value λ̂ maximises

the likelihood function L(X|θ) for a particular observation X. The likelihood function of a
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set of N independent observations X = X1, X2, ..., XN is given by:

L(X|λ) =
N∏
i=1

f(Xi, λ) (5)

where f(Xi, λ) is a probability distribution function of any observation Xi [15].

3.3.1 Maximum likelihood in LIV analysis

For the use in LIV time of flight analysis, the likelihood function L, for NON observed events

from the ON region, is given by:

L(λn) =

NON∏
i=1

(
p
(s)
i

f (s) (Ei, ti)∫ Emax

Emin

∫ tmax

tmin
f (s) (E, t) dtdE

+ p
(b)
i

f (b) (Ei, ti)∫ Emax

Emin

∫ tmax

tmin
f (b) (E, t) dtdE

)
(6)

where p
(s)
i and p

(b)
i are the probabilities for the event i to be either the signal or the back-

ground, respectively, since the ON region contains gamma rays from the source and the back-

ground. The energies Ei are in the ranger of the minimum and maximum energy observed,

and the times ti are in the range from the start to the end of the observation. Maximum and

minimum energy and times are used for normalisation of the signal and background parts

of the likelihood function. f (s) (E, t) is the probability distribution function for detecting a

gamma ray with energy E at the time t and f (b) (E, t) is the probability distribution function

for detecting a background event with energy E at the time t. The probability distribution

function for detecting a gamma ray with energy E at the time t can be calculated with:

f (s) (E, t) =

∞∫
0

F (t)Φobs(E)G(E,Etrue)Aeff (Etrue, t)dEtrue (7)

where F (t) is the light curve template, Φobs(E) is the observed spectral distribution of

gamma-rays, G(E,Etrue) term represents the energy resolution and the instrument bias.

Etrue is the true energy of a particular event, while G(E,Etrue) is the probability distribution

function of Etrue being measured as E. Lastly, Aeff (Etrue, t) is the collection area of the

instrument in true energy. The collection is also a probability distribution function and

represents a probability that we detect an event of that energy. It can be time dependant if

the observation conditions are variable. The same expression (equation (7)) is used for the

background events probability distribution function but with slightly different considerations.

Since, in general, we are not able to determine the origin of the background events their

energy and time distribution are taken to be the same as observed on Earth, unlike gamma

7



rays where we take the distribution at the source. Probabilities for the event to be part of

the background or the signal can be calculated with:

p
(s)
i = n

NON − αNOFF

NON

, p
(p)
i =

αNOFF

NON

(8)

α is the ratio of effective exposure time in the ON and OFF regions (α = tON/tOFF).

3.4 LIVelihood

LIVelihood software is used to calculate the maximum likelihood of the LIV parameter λn

and reconstruct the lag of the photons. The calculation is done by preforming simulations of

the source based on the provided light curve template and parameters which characterise the

source. Parameters needed for the simulations are: i) time range of the observation, ii) energy

range of the observed photons, iii) light curve template, iv) photon energy distribution, v)

proportion of the background signal, vi) redshift of the source.

For provided parameters, LIVelihood constructs N simulations of the source. For each

simulation, the log-likelihood is calculated using the logarithm of the equation (6). The min-

imum of the log-likelihood function gives us the value of the parameter λn which maximises

the likelihood function. The upper and lower 95% confidence interval limits are taken as

the point where:

−2 lnL(λn) = 3.84 (9)

The final value of the LIV parameter, with the respective upper and lover limits, is calculated

as the mean of the N simulations. The lag is also reconstructed by fitting an asymmetrical

Gaussian distribution over the LIV parameters given from each simulation.
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4 DATA SAMPLE

There are several types of gamma-ray sources that could be used for LIV tests. Pulsars

have a regular pulsation, which would allow using signals from different periods, providing

us with large data samples. The downside is their relative proximity to Earth, which greatly

reduces the possible LIV effect, making it hard to detect. Gamma-ray bursts have a short

variability timescale which is useful in LIV testing, but are very unpredictable and because

of their great distance from the Earth a lot of very high energy gamma rays end up being

absorbed on the way. Lastly, AGN-s can have strong flares with high variability and flux,

which in addition to being relatively easy to detect makes them great candidates for LIV

time of flight analysis.

For this analysis, we used gamma rays from an AGN Markarian 421 observed by the

MAGIC telescopes on the night from 24 to 25 of April 2014. Data came in the form of DL3

files, from which we extracted the events. DL3 is a standardised format for storing high-level

astronomical gamma-ray data. They contain an event list consisting of gamma-like events

and the instrument response function (IRF). The event list is made after the analysis cuts.

The analysis cut is made to keep only gamma-ray like events and discard those that can

safely be considered as part of the background noise. The IRF contains the effective area,

energy dispersion and the point spread function of the instrument.

4.1 Markarian 421

Markarian 421 an AGN (BL Lac) located in the Ursa Major constellation at the redshift

z = 0.0308. It is one of the brightest blazars, making it also one of the most observed objects

in the very high energy range. Observations of Markarian 421 have been made in the whole

electromagnetic spectrum from various different telescopes. Along with having a very high

flux, it also shows rapid flux variability [16].

As stated before, sources with a high flux variability are very important in LIV time of

flight analysis. The strength of the flux also plays a significant role in the analysis. Stronger

flux provide richer sample statistics, especially on the higher energies where the LIV effect

is more pronounced.

Because of this, we selected Markarian 421 as the observed source. Specifically, MAGIC

observations on the night from 24 to 25 of April 2014 when it experienced a strong flare.

9



The observation was scheduled to last from 22h25 to 22h55. When the flare started, the

observation was extended, so the flare could be observed in its entirety. In the end, the whole

observation lasted for about three and a half hours. Maximum intensity of the flux was 7 CU,

after which it decreased to 2 CU for the rest of the observation. CU is the intensity of the

flux in the units of Crab Nebula flux. The observation was done in wobble mode. When the

wobble mode is used [17], the telescope does not point directly at the source but slightly next

to it. This is done to allow for a simultaneous observation of the background and the source.

Using this observation mode, the amount of time needed to make background estimation is

greatly reduced, since we no longer need to make a separate observation to get data from the

background. To account for the asymmetries in the camera and the observed background

after the first run, the pointing position of the telescope is shifted to the position opposite

to the initial one with respect to the source. For this particular observation, 13 runs were

made, each lasting approximately 15 minutes. For the observation, the zenith angle ranged

from 10◦ to 50◦. Weather conditions for the duration of the flare were good, and no cloud

cover was reported [18].

4.2 Data selection and analysis

Each event from the observations has a time of detection, reconstructed energy of the gamma

ray and reconstructed coordinates of the origin of the gamma-ray. This information was used

to determine which events we were going to use to create the light curve template. The first

step in preparing the data was extracting events with energies between 100 and 200 GeV.

The lower limit partially stems from the need to have a stable collection area of the detector.

For energies lower than 100GeV, the collection area changes significantly depending on the

energy of the gamma ray, making the reconstructed gamma-ray energy unreliable. For

similar reasons, we decided to limit our data to only the first 9 runs of the observation. This

is because during the observation the zenith angle was increasing and with it the analysis

energy threshold. With a higher zenith angle, the observed Cherenkov radiation emitted by

the gamma rays has to travel through more of the atmosphere. While travelling through

the atmosphere, the radiation can be scattered or absorbed. Cherenkov radiation caused

by lower energy gamma rays has a higher chance of being scattered or absorbed. Meaning

that making observations at a higher zenith angle raises the minimum energy of the gamma

ray that can be observed, and in turn raises the minimum energy at which the collection
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area is stable. To keep the energy range consistent for the whole observation, we focused

only on the first 9 wobbles where the zenith angle was up to 35◦. The 200 GeV upper limit

was set as a compromise between the number of events used for the light curve template

and the energy at which the LIV effect is no longer negligible. If the upper limit was too

low, we would not have enough data to make an accurate light curve template and, on the

other hand, if we set the upper limit too high we would no longer be able to ignore the LIV

effect for those events. The energy limits are not strictly defined, and while we could have

set them differently, we decided to use the 200 GeV limit since it is roughly the median of

energy in the data.

The next step was defining the size of ON and OFF regions in the observations. For

calculating the ON region, we used a gammapy function CircleSkyRegion, which uses the

pointing coordinates of the telescope, source coordinates and angle from the "RAD MAX"

table in the FITS files to calculate the size and location of the region for each energy range

in the "RAD MAX" table. The OFF region is made by mirroring the ON region using the

gammapy function ReflectedRegionsFinder for the same pair of energy ranges. Each event

was then sorted into one of the two regions based on their origin coordinates. If an event

was not inside one of the two regions, it was discarded from the analysis.

Now that we had extracted the events based on their energies and separated them in the

ON and OFF regions, the final step of data selection was subtracting the background from

the source events leaving us with an approximate number of events from the source. To do

this, we binned the ON events in a way that each bin contained the same number of events,

which makes all the bins have different widths (wi; i = 1, ..., N where N is the number of

bins). The OFF events were then sorted into bins of the same widths wi, but unlike the ON

events, they have a variable number of events in each bin. By subtracting each ON and OFF

bin, we were left with a number of events in each bin NEX. The number of excess events

NEX is an approximate number of the events that make up the signal. We are not able to

exactly know which event belongs to the signal and which is a part of the background, so

by using the ON and OFF regions we get an estimation of the signal. To make the light

curve from these binned excess events, each bin centre was used as an x-axis value and the

height of the bin, i.e. number of events in the bin, was used as the y-axis value. The points

obtained were then normalised and their uncertainties were calculated as:
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σi =

√
NONi +NOFFi

wi

(10)

where NONi is the number of ON events for that bin, NOFFi number of OFF events, wi is

the width of the bin and i = 1, ..., N is the bin index. The resulting plot is shown on Figure

1.

Figure 1: Light curve with bin centres used for x-axis, normalised number of events in the

bin for the y-axis and uncertainties calculated using equation (10).

4.3 Light curve template

To create a light curve template that we would later on use in LIVelihood we fitted the

light curve on Figure 1 with several functions. The functions used for fitting were:

• sum of Gaussian distributions

Φ(t) =
N∑
i=1

Ai

σi

exp

(
−(t− µi)

2

2σ2
i

)
(11)
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• sum of Cauchy distributions

Φ(t) =
N∑
i=1

Ai

π
(
1 + (t−µi)

2

σ2
i

) (12)

• sum of skewed Gaussian distributions

Φ(t) =
N∑
i=1

Ai

e
µi−t

Tri + e
t−µi
Tdi

(13)

• Fourier series

ΦT (t) =
N∑
i=1

Ai cos
(
i
π

T
t
)

(14)

• Kernel density estimation (KDE)

Φh(t) =
1

nh

n∑
i=1

K

(
t− ti
h

)
(15)

Note that N is the number of functions used for fitting and n is the number of bins. All

fits except the KDE were made using the curve_fit function from SciPy For KDE we used

KernelDensity function from sklearn.neighbors in python.

We used several different functions for the fit so we could compare the results and see

which function gives us the best fit while also keeping the number of parameter to a minimum.

For the functions used in the final analysis, the number of parameters was 12 for all the

functions, so that we could compare them to each other.

4.3.1 Kernel density estimation

Kernel density estimation uses kernel smoothing, i.e. estimates a real valued function as the

weighted average of neighbouring data, in order to estimate the probability density function

of a random variable using kernels (window functions) as weights. For the analysis we used

KernelDensity function from sklearn.neighbors in python. This function gives a density

estimate at a point y within a group of points xi; i = 1, ..., N as:

ΦK(y) =
N∑
i=1

K(y − xi;h) (16)

where K(x;h) is a positive function (kernel) and is controlled by the bandwidth parameter

h. For the fit, we used the Gaussian distribution kernel. Bandwidth parameter has a big

influence on the result by changing the bias and variance of the estimate. High bandwidth
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leads to smooth density distribution (high-bias) which hides the underlying structure of the

data, making it difficult to draw any conclusions from the results. Small bandwidth leads

to unsmooth density distribution (high-variance) which falsely shows more variation than is

present in the data, which could lead to false conclusions. Since we were not able to justify

the selection of the bandwidth parameter h, KDE method was not used in further analysis.

4.3.2 Fourier series

For the fit with Fourier series, we used function (14) with N = 8 and parameter T being the

same for all terms of the sum (T = 16800± 70). The curve_fit function did not converge

if the uncertainties of the points were used in the fit, so to calculate the fit parameters and

their standard derivations we ran the fit 500 times and each time fluctuated the y value

of each point. By doing so, we simulated the uncertainties on each point. The fluctuation

was done by taking the random value from the normal distribution centred on the original

value of the point, with the standard deviation of the distribution given by the error of the

point. Parameters were then taken as the average of the 500 runs and standard derivation

calculated using the std function from NumPy.

To help visualise deviation of the fit to the data, three additional plots are made (Figure

2). The first one shows the distance of the fit function from the points with the original

uncertainties on the points. Second shows the distance of the fit function from the points,

divided by the uncertainties. Third shows the relative distance of the fit function from the

points with the original uncertainties on the points, i.e. distance divided by the value of the

points.

The resulting fit ended up being too smooth, meaning it did not manage to recreate the

structure of the light curve with enough accuracy. This inaccuracy in the structure would

make it difficult to draw any conclusion on the existence of the LIV effect. Additionally, as

seen on the plots 2, 3 and 4 (Figure 2) deviation on some points is quite large. Because of

this, the fit with Fourier series was not used in further analysis.
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Figure 2: Light curve fitted with Fourier series and different residual representations. From

top to bottom the pads show: i) Resulting fit with Fourier series (equation 14). ii) Residual

with the uncertainties calculated from 500 fits with fluctuated y values of the points. iii)

Residual in the units of σ with the same uncertainties used in second pad. iv) Residual

normalised by points with normalised uncertainties from the second pad.
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4.3.3 Sum of Gaussian distributions

The fitting was done using function (11) with N = 4. The fit results are shown in the table

1. Figure 3 shows the resulting fit, with individual Gaussian distributions that make up

function (11) and the residuals, which are calculated in the same way as the Fourier series

plot before. Since we are comparing different fit function to make sure they are similarly

fitted, χ2 was calculated and the results are shown in table 4.

For most of the points the residuals are within one sigma while none are exceeding two

sigma. In contrast to the Fourier series plot, this plot recreated the light curve structure

with more accuracy. Because of this the fit was later used as the light curve template for

LIVelihood simulations.

Table 1: Fit parameters for the sum of Gaussian distributions, equation (11).

Parameter Gauss 1 (red) Gauss 2 (purple) Gauss 3 (green) Gauss 4 (pink)

A 63± 2024 353± 10505 132± 13729 330± 32549

µ 3198± 5894 1971± 87540 5917± 95444 4439± 36821

σ 227± 9709 1198± 79675 496± 37773 713± 133535
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Figure 3: Light curve fitted with a sum of Gaussian distributions and different residual

representations. From top to bottom the pads show: i) Resulting fit with individual Gaussian

distributions that make up the sum (equation 11) and uncertainties on points calculated with

equation (10). ii) Residual the same uncertainties as in the first pad. iii) Residual in the

units of σ the same uncertainties as in the first pad. iv) Residual normalised by points with

normalised uncertainties from the first pad.
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4.3.4 Sum of skewed Gaussian distributions

The fitting was done using function (13) with N = 3. The fit results are shown in the table

2. Figure 4 shows the resulting fit, with individual skewed Gaussian distributions that make

up function (13) and the residuals, which are calculated in the same way as the Fourier series

plot before.

Similarly, as the Gaussian distribution fit, the residual for the most points is within

one sigma with only one point exceeding two sigma. While one fewer term was used in

comparison to the Gaussian distribution fit, the resulting χ2 was similar, as shown in table

4. Since the resulting fit captured different aspects of the light curve structure compared

to the Gaussian distribution fit, it made for a good comparison in the maximum likelihood

results.

Table 2: Fit parameters for the sum of Gaussian distributions, equation (13).

Parameter Skew Gauss 1 (red) Skew Gauss 2 (purple) Skew Gauss 3 (green)

A 0.5 ± 0.3 0.7 ± 0.6 1.2 ± 0.3

µ 2425 ± 10457 2890 ± 181757 4333 ± 249935

Tr 3544 ± 12608159 170 ± 22336 990 ± 1973093

Td 93 ± 7088 524 ± 1403490 1726 ± 258025
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Figure 4: Light curve fitted with a sum of skewed Gaussian distributions and different

residual representations. From top to bottom the pads show: i) Resulting fit with individual

skewed Gaussian distributions that make up the sum (equation 13) and uncertainties on

points calculated with equation (10). ii) Residual the same uncertainties as in the first

pad. iii) Residual in the units of σ the same uncertainties as in the first pad. iv) Residual

normalised by points with normalised uncertainties from the first pad.
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4.3.5 Sum of Cauchy distributions

The fitting was done using function (12) with N = 4. The fit results are shown in the table 3.

Figure 5 shows the resulting fit, with individual Cauchy distributions that make up function

(12) and the residuals, which are calculated in the same way as the Fourier series plot before.

As well as the previous two fits, the residuals are mostly within one sigma, while none

are above two sigma. Comparing the χ2 results from the table 4 the Cauchy distribution had

the worst results, but it was still very similar to the other fits. The resulting fit look similar

to the Gaussian distibution fit, but since the functions used for fitting are very different, it

still made for a good comparison in the maximum likelihood results.

Table 3: Fit parameters for the sum of Cauchy distributions, equation (12).

Parameter Cauchy 1 (red) Cauchy 2 (purple) Cauchy 3 (green) Cauchy 4 (pink)

A 1436± 287239 301± 54416 466± 164112 1205± 485140

µ 1774± 53155 3242± 6119 5856± 34077 4485± 19431

σ 1368± 177002 299± 34231 590± 117605 840± 171874

Table 4: χ2 results for the fits.

Gaussian distribution Skewed Gaussian distribution Cauchy distribution

χ2 25.41 25.22 27

Reduced χ2 1.27 1.20 1.37

p-value 0.19 0.24 0.12

Degrees of freedom 20 21 20
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Figure 5: Light curve fitted with a sum of Cauchy distributions and different residual rep-

resentations. From top to bottom the pads show: i) Resulting fit with individual Cauchy

distributions that make up the sum (equation 12) and uncertainties on points calculated

with equation (10). ii) Residual the same uncertainties as in the first pad. iii) Residual in

the units of σ the same uncertainties as in the first pad. iv) Residual normalised by points

with normalised uncertainties from the first pad.

21



5 RESULTS

For the maximum likelihood analysis, we assumed perfect resolution from the detector. This

means there was no energy bias, i.e. in equation (7) the energy resolution and instrument

bias term G is an identity matrix. Additionally, the collection area of the instrument is

homogenous and constant in time and across the energy range. This was done because in

this thesis we focused on comparing the likelihood results from different functions that were

used to generate the light curve template. For that analysis, the detector systematics are

not relevant and making the resolution perfect makes the analysis easier.

5.1 Example analysis

Before working on the data from Markarian 421 we preformed an example analysis using

the data from the LIVelihood tutorial [19]. In the tutorial, the High Energy Stereoscopic

System (HESS) observations of AGN PKS 2155-304 were used. The observation chosen was

from the night of 29 to 30 of July 2006.

The data was fitted with a single Gaussian distribution:

Φ(t) = A exp

(
−(t− µ)2

2σ2

)
+ C (17)

The resulting fit is shown on Figure 6. The fit was then used as the light curve template

input for LIVelihood to preform simulations of the source. The first result of the simulation

is the plot showing the likelihood value with respect to the time shift (Figure 7). From

this plot we can take the upper and lover values of the time shift so that they make the

95% confidence interval. The simulation was made 100 times and the resulting time shifts

plotted as a histogram along with their upper and lover limits on Figure 8. On each plot

there are additional information about the time shift: i) number of simulations, ii) mean

and standard deviation of the 100 simulation results, iv) underflow and overflow, i.e. the

number of results exceeding the boundaries of the plot, v) χ2 and the number of degrees of

freedom, vi) p-value, vii) parameters of the asymmetrical Gaussian distribution fit.
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Figure 6: PKS 2155-304 light curve with a fitted Gaussian distribution, equation (17).

Figure 7: Likelihood value with respect to the timeshift for the example LIVelihood

simulation of PKS 2155-304 data.
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Figure 8: Histogram of the time shift value that maximises the likelihood for each of the

100 simulations, fitted with an asymmetrical Gaussian distribution. Left : lower limit of the

time shift, Center : time shift, Right : upper limit of the time shift.

To check whether the simulation can reconstruct the lag properly, we can inject a fake LIV

effect. Figures 9 and 10 show the same plots as the two above, but with a fake 2000 s/TeV lag

introduced to the simulation. The resulting likelihood value plot shifts to the new minimum

around 2000 s/TeV. This is expected since we introduced the same amount of fake shift. The

mean is also shifted as expected, along with the upper and lower limits. From this test, we

can conclude that the software can recreate the LIV effect.
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Figure 9: Likelihood value with respect to the timeshift for the example LIVelihood

simulation of PKS 2155-304 data with the injected time shift of 2000 s/TeV.

Figure 10: Histogram of the time shift value that maximises the likelihood for each of the

100 simulations with injected time shift of 2000 s/TeV, fitted with an asymmetrical Gaussian

distribution. Left : lower limit of the time shift, Center : time shift, Right : upper limit of

the time shift
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5.2 Markarian 421 analysis

We preformed the analysis on 50 simulations. Optimal analysis is preformed on at least

1000 simulations, but due to hardware limitations we were able to do only 50. The way

LIVelihood is currently written, it uses more and more RAM as it preforms the simulations.

After a while, it uses more than the maximum available RAM and freezes, resulting in a

failed simulation run. Because of this the maximum number of simulations that we could

do for some functions was 50 and because we want to compare the different functions with

each other all the results needed to have the same number of simulations. While this did

not result in the most accurate recreation of time shift, we were still able to compare the

results between different functions used for creating the light curve template, and that was

the goal of this thesis.

With the available hardware, we managed to make up to 100 simulations for the light

curve templated created by the four Gaussian distributions. This result is included at the

end of this chapter to illustrate the difference more simulation makes on the final result,

and to show that the light curve template created by four Gaussian distributions is more

efficient in terms of computing power needed than the rest. For the direct comparison of the

simulation results, we only used the results from the 50 simulation runs.

5.2.1 Four Gaussian distributions

Figure 11 shows the likelihood value with respect to the time shift for the light curve template

created with four Gaussian distributions. The histograms showing the value of the time shift

that maximised the likelihood, along with the upper and lower limits, are shown on Figure

12. The mean values for the time shift and its upper and lower limits are given in Table

5. The simulations took about 2 hours to compute. Using Equation (4) we calculated the

lower limit for the energy at which the effects of quantum gravity become significant for the

linear term:

E
(G)
QG1

= 2.48557 · 1017GeV (18)
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Figure 11: Likelihood value with respect to the timeshift for the light curve template created

with four Gaussian distributions.
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Figure 12: Histogram of the time shift value that maximises the likelihood for the light curve

template created with four Gaussian distributions, fitted with an asymmetrical Gaussian

distribution. Left : lower limit of the time shift, Center : time shift, Right : upper limit of

the time shift.

5.2.2 Three skewed Gaussian distributions

The resulting likelihood value with respect to the time shift for the light curve template

created with three skewed Gaussian distributions is shown on Figure 13. The function is

very flat around the minimum and does not follow the expected parabolic shape. In the

simulations, only a few functions had a converging minimum, which was not enough to

create a distribution of the time shift or its limits. The simulation also took a little over 8

hours to compute. From this, we concluded that the most likely cause for the minimization

to not converge was the complexity of the function used to create the light curve template. It

is possible that with more simulations, more minimums would converge, and a distribution

could be created.
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Figure 13: Likelihood value with respect to the timeshift for the light curve template created

with three skewed Gaussian distributions.

5.2.3 Four Cauchy distributions

The last simulation used the light curve template created by the four Cauchy distributions.

Figure 14 shows the likelihood value with respect to the time shift. The histograms showing

the value of the time shift that maximised the likelihood along with the upper and lower

limits are shown on Figure 15. The mean of the time shift value with its upper and lower

limits is shown in the Table 5. The simulation took about 4.5 hours to compute.

The lower limit of the energy at which the quantum gravity effects become significant for

the linear term calculated from λ is:

E
(C)
QG1

= 3.11314 · 1017GeV (19)

Comparing the results from the four Gaussian distributions and four Cauchy distribu-

tions, we concluded that the four Gaussian distributions model had lower uncertainties on

the time shift and its limits, and had a faster computing time by about 44.44%. The 95%

confidence intervals for both models are comparable.
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Table 5: Results of the LIVelihood simulations using light curves created by: i) four Gaus-

sian distributions, ii) four Cauchy distributions, iii) three skewed Gaussian distributions.

λLL: lower limit of the time shift, λ: time shift, λUL upper limit of the time shift, χ2
LL: χ2

result of the asymmetrical Gaussian distribution fit on the histogram of λLL, χ2: χ2 result

of the asymmetrical Gaussian distribution fit on the histogram of λ, χ2
UL: χ2 result of the

asymmetrical Gaussian distribution fit on the histogram of λUL, p− valueLL: p-value result

of the asymmetrical Gaussian distribution fit on the histogram of λLL, p-value: p-value result

of the asymmetrical Gaussian distribution fit on the histogram of λ, p− valueUL result of the

asymmetrical Gaussian distribution fit on the histogram of λUL, Npar: number of parameter

of the function used to create the light curve template.

Parameter four Gaussian distributions four Cauchy distributions three skewed Gaussian distributions

λLL −1695± 1057 −1523± 1307 -

λ −139.9± 875 −76.22± 971 -

λUL 1408± 859.1 1416± 1276 -

χ2
LL 19.57 30.33 -

χ2 15.92 16.81 -

χ2
UL 23.62 26.42 -

p− valueLL 0.8114 0.2543 -

p-value 0.938 0.9147 -

p− valueUL 0.5977 0.44 -

Npar 12 12 12
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Figure 14: Likelihood value with respect to the timeshift for the light curve template created

with four Cauchy distributions.
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Figure 15: Histogram of the time shift value that maximises the likelihood for the light

curve template created with four Cauchy distributions, fitted with an asymmetrical Gaussian

distribution. Left : lower limit of the time shift, Center : time shift, Right : upper limit of

the time shift.

5.2.4 Additional results

As mentioned before, for the light curve template created using the four Gaussian distribu-

tions, we managed to complete 100 simulations. The likelihood value with respect to the

time shift is shown on Figure 16 and the histograms showing the value of the time shift that

maximised the likelihood along with the upper and lower limits are shown on Figure 17. The

resulting mean of the time shift and its upper and lower limits are:

λLL = −1542± 997.1

λ = 42.58± 804.1 (20)

λUL = 11590± 938.9

The lower limit of the energy at which the quantum gravity effects become significant for

the linear term calculated from λ is:

EQG1
= 2.6614 · 1017GeV (21)
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Figure 16: Likelihood value from 100 simulations with respect to the timeshift for the light

curve template created with four Gaussian distributions.
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Figure 17: Histogram of the time shift value that maximises the likelihood from 100 simu-

lations for the light curve template created with four Gaussian distributions, fitted with an

asymmetrical Gaussian distribution. Left : lower limit of the time shift, Center : time shift,

Right : upper limit of the time shift.
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6 CONCLUSION

Measurements of quantum gravity are challenging because of the energy scale at which the

effects of quantum gravity are expected to manifest. In spite of this, by utilising some of

the proposed quantum effects, such as fluctuations of space-time on the Planck scale, we

could make measurements of quantum gravity at much lower energy scales. By modelling

the effects of space-time fluctuations as a modification of the photon dispersion relation, we

could observe the LIV effect at energies much lower than the Planck scale.

In this thesis, we focused on checking how the choice of the function used to reconstruct

the light curve template affects the maximum likelihood analysis done by LIVelihood sim-

ulations. Using the gamma rays from Markarian 421 observed by MAGIC telescopes on the

night of 24 to 25 of April 2014 we recreated the light curve template by fitting five different

functions. Further analysis with the recreated light curve templates was done on simulations

of the observed data. Before making the fit, we binned the data into ON and OFF regions.

By subtracting the ON and OFF regions, we got an approximated number of gamma rays

coming from the signal. The fit was then done on the gamma rays in the 100 to 200GeV

energy range. This gave us a good number of gamma rays to fit while also keeping the LIV

effect negligible.

For the KDE, we were not able to find a good justification for the choice of the bandwidth

parameter. Making the bandwidth too high would hide a lot of the structure in the data,

and making it too small makes the resulting fit show more variation than present in the data.

Because of this KDE was not used in the final LIVelihood simulations. The fit using Fourier

series also did not manage to give satisfying results for the use in LIVelihood simulations.

The fit was not able to recreate the structure of the light curve and had big deviation on

certain points. The other three fits: sum of Gaussian distributions, sum of skewed Gaussian

distributions and sum of Cauchy distributions managed to capture the light curve variations

with more accuracy. As seen in table 4 all the fits had a similar χ2 value, so we could

compare the simulation results from their respective light curves.

In the end, for the light curve created with three skewed Gaussian distributions not

enough of the minimums were convergent, so the distribution could not have been calcu-

lated. The most likely cause is the complexity of the function used to create the light curve

template. That left us with the four Gaussian distributions and the four Cauchy distribu-

tions models for comparison. While the simulations using both models managed to calculate
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the time shift value with its upper and lower limits, the simulation with the four Gaussian

distributions computed much faster. In addition, the four Gaussian distributions model had

lower uncertainties on the time shift and its limits, in comparison to the four Cauchy dis-

tributions model. The 95% confidence intervals of both models were compareble. Finally,

for the four Gaussian distributions model we managed to compute up to 100 simulations,

making it the most efficient model in terms of computing power needed. The lower limits

for the energy at which the effects of quantum gravity become significant in the linear term

were calculated as E(G)
QG1

= 2.48557 · 1017 GeV for the four Gaussian distributions model and

E
(C)
QG1

= 3.11314 · 1017 GeV for the four Cauchy distributions model.

For future analysis, these simulations can be repeated but with at least 1000 simulations

for each function. That would give a more accurate time shift calculation and might give

some results even for the three skewed Gaussian distributions model. In addition, with the

right justification for the bandwidth parameter of the KDE, the simulations could be done

with the light curve template created with KDE.
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